SH2 Ligand-Like Effects of Second Cytosolic Domain of Na/K-ATPase α1 Subunit on Src Kinase

نویسندگان

  • Moumita Banerjee
  • Qiming Duan
  • Zijian Xie
  • Jung Weon Lee
چکیده

Our previous studies have suggested that the α1 Na/K-ATPase interacts with Src to form a receptor complex. In vitro binding assays indicate an interaction between second cytosolic domain (CD2) of Na/K-ATPase α1 subunit and Src SH2 domain. Since SH2 domain targets Src to specific signaling complexes, we expressed CD2 as a cytosolic protein and studied whether it could act as a Src SH2 ligand in LLC-PK1 cells. Co-immunoprecipitation analyses indicated a direct binding of CD2 to Src, consistent with the in vitro binding data. Functionally, CD2 expression increased basal Src activity, suggesting a Src SH2 ligand-like property of CD2. Consistently, we found that CD2 expression attenuated several signaling pathways where Src plays an important role. For instance, although it increased surface expression of Na/K-ATPase, it decreased ouabain-induced activation of Src and ERK by blocking the formation of Na/K-ATPase/Src complex. Moreover, it also attenuated cell attachment-induced activation of Src/FAK. Consequently, CD2 delayed cell spreading, and inhibited cell proliferation. Furthermore, these effects appear to be Src-specific because CD2 expression had no effect on EGF-induced activation of EGF receptor and ERK. Hence, the new findings indicate the importance of Na/K-ATPase/Src interaction in ouabain-induced signal transduction, and support the proposition that the CD2 peptide may be utilized as a Src SH2 ligand capable of blocking Src-dependent signaling pathways via a different mechanism from a general Src kinase inhibitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a potential receptor that couples ion transport to protein kinase activity.

In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane tra...

متن کامل

Binding of Src to Na+/K+-ATPase forms a functional signaling complex.

We have shown that ouabain activates Src, resulting in subsequent tyrosine phosphorylation of multiple effectors. Here, we tested if the Na+/K+-ATPase and Src can form a functional signaling complex. In LLC-PK1 cells the Na+/K+-ATPase and Src colocalized in the plasma membrane. Fluorescence resonance energy transfer analysis indicated that both proteins were in close proximity, suggesting a dir...

متن کامل

Protein Carbonylation of an Amino Acid Residue of the Na/K‐ATPase α1 Subunit Determines Na/K‐ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

BACKGROUND We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase α1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulat...

متن کامل

Expression of rat Na-K-ATPase α2 enables ion pumping but not ouabain-induced signaling in α1-deficient porcine renal epithelial cells.

Na-K-ATPase is a fundamental component of ion transport. Four α isoforms of the Na-K-ATPase catalytic α subunit are expressed in human cells. The ubiquitous Na-K-ATPase α1 was recently discovered to also mediate signal transduction through Src kinase. In contrast, α2 expression is limited to a few cell types including myocytes, where it is coupled to the Na(+)/Ca(2+) exchanger. To test whether ...

متن کامل

PTH-mediated regulation of Na+-K+-ATPase requires Src kinase-dependent ERK phosphorylation.

Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1-subunit through ERK-dependent phosphorylation and translocation of protein kinase Calpha (PKCalpha). On the basis of previous studies, we postulated that PTH regulates sodium pump activity through Src kinase, PLC, and calcium-dependent ERK phosphorylation. In the present work utilizing opossum kidn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015